Personal bankruptcy prediction by mining credit card data

نویسندگان

  • Tengke Xiong
  • Shengrui Wang
  • André Mayers
  • Ernest Monga
چکیده

A personal bankruptcy prediction system running on credit card data is proposed. Personal bankruptcy, which usually results in significant losses to creditors, is a rapidly increasing yet little understood phenomenon. The most commonly used methods in personal bankruptcy prediction are credit scoring models. Some data mining models have also been investigated in this domain. Neither the scoring models nor the existing data mining methods adequately take sequence information in credit card data into account. In our system, sequence patterns, obtained by developing sequence mining techniques and applying them to credit card data from one major Canadian bank, are employed as main predictors. The mined sequence patterns, which we refer to as bankruptcy features, are represented in low-dimensional vector space. From the new feature space, which can be extended with some existing prediction-capable features (e.g., credit score), a support vector machine (SVM) classifier is built to combine these mined and already existing features. Our system is readily comprehensible and demonstrates promising prediction

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data Mining in Finance and Accounting: a Review of Current Research Trends

Data mining tools become important in finance and accounting. Their classification and prediction abilities enable them to be used for the purposes of bankruptcy prediction, going concern status and financial distress prediction, management fraud detection, credit risk estimation, and corporate performance prediction. This study aims to provide a state-of-the-art review of the relative literatu...

متن کامل

Combination of Ensemble Data Mining Methods for Detecting Credit Card Fraud Transactions

As we know, credit cards speed up and make life easier for all citizens and bank customers. They can use it anytime and anyplace according to their personal needs, instantly and quickly and without hassle, without worrying about carrying a lot of cash and more security than having liquidity. Together, these factors make credit cards one of the most popular forms of online banking. This has led ...

متن کامل

Credit Supply to Personal Bankruptcy Filers: Evidence from Credit Card Mailings

Are consumers who have filed for personal bankruptcy before excluded from the unsecured credit market? Using a unique data set of credit card mailings, we directly explore the supply of unsecured credit to consumers with the most conspicuous default risk—those with a bankruptcy history. On average, over one-fifth of personal bankruptcy filers receive at least one offer in a given month, with th...

متن کامل

Personal Credit Score Prediction using Data Mining Algorithms (Case Study: Bank Customers)

Knowledge and information extraction from data is an age-old concept in scientific studies. In industrial decision-making processes, the application of this concept gives rise to data-mining opportunities. Personal credit scoring is an ever-vital tool for banking systems in order to manage and minimize the inherent risks of the financial sector, thus, the design and improvement of credit scorin...

متن کامل

Multiple Criteria Linear Programming Data Mining Approach: An Application for Bankruptcy Prediction

Data mining is widely used in today’s dynamic business environment as a manager’s decision making tool, however, not many applications have been used in accounting areas where accountants deal with large amounts of operational as well as financial data. The purpose of this research is to propose a multiple criteria linear programming (MCLP) approach to data mining for bankruptcy prediction. A m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2013